6.002 CIRCUITS AND ELECTRONICS

Lecture 22 - Amplifier biasing and small-signal analysis

May 5, 2020

Contents:

- 1. Review of MOSFET
- 2. MOSFET amplifier (cont.)
- 3. Small-signal analysis
- 4. Amplifier biasing

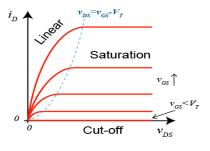
Reading Assignment:

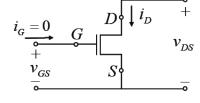
Agarwal and Lang, Ch. 7 (§ § 7.7-7.9), Ch. 8 (§ § 8.1, 8.2)

Handouts:

Lecture 22 notes

Announcements:


This lecture is being recorded and it will be posted in the certificates-protected part of the 6.002 website


6.002 Spring 2020

Lecture 22

1. Review of MOSFET

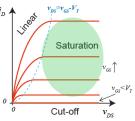
· MOSFET output characteristics

- Cut-off: $v_{GS} \le V_T$

$$i_D = 0$$

- Linear or triode: $v_{GS} > V_T$, $v_{DS} \le v_{GS} - V_T$

$$i_D = K(v_{GS} - V_T - \frac{v_{DS}}{2})v_{DS}$$

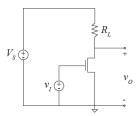

- Saturation: $v_{GS} > V_T$, $v_{DS} \ge v_{GS} - V_T$

$$i_D = \frac{K}{2}(v_{GS} - V_T)^2$$

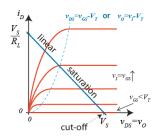
6.002 Spring 2020

Lecture 22

• Equivalent circuit model:

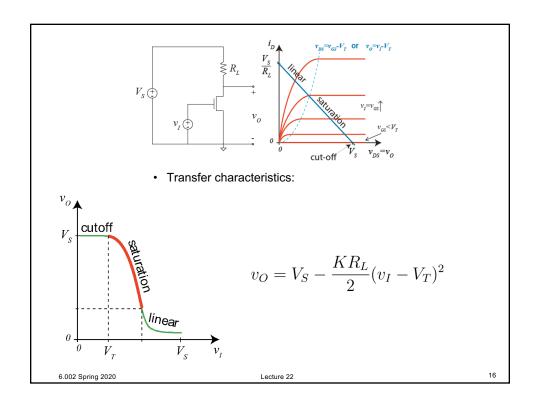

$$G \longrightarrow b$$

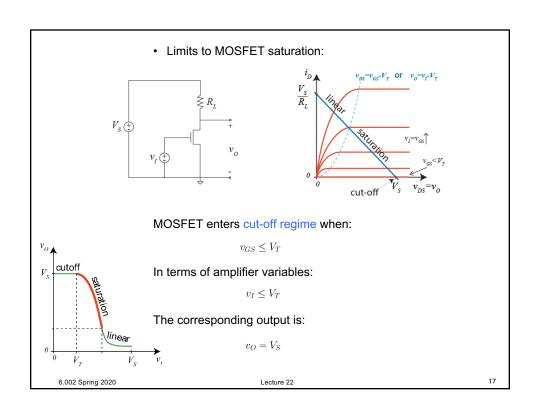
$$i_D = f(v_{GS}, v_{DS})$$
 S

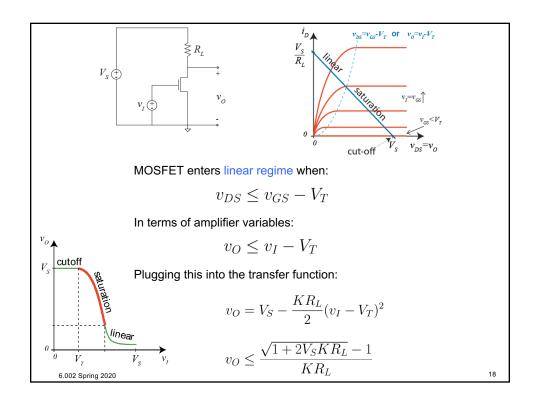

6.002 Spring 2020

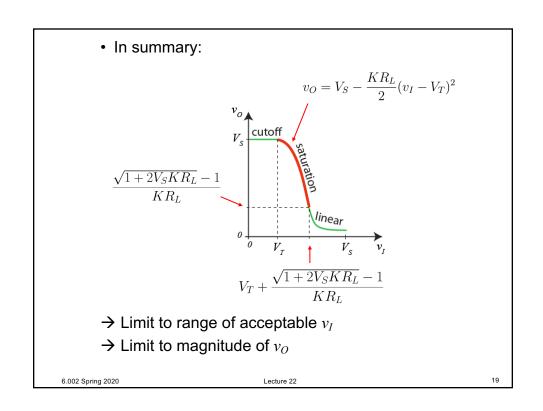
Lecture 22

2. MOSFET amplifier (cont.)

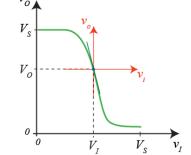

Load diagram:




For proper operation, MOSFET must be biased in saturation.


6.002 Spring 2020

Lecture 22


3. Small-signal analysis

• Transfer characteristics of MOSFET amplifier are not linear:

→ distortion!

$$v_O = V_S - \frac{KR_L}{2}(v_I - V_T)^2$$

• Key insight: if magnitude of signal is *small* relative to V_S , transfer characteristics around bias point look fairly *linear* \rightarrow low distortion.

6.002 Spring 2020

Lecture 22

21

- If one can linearize, what are the v_o - v_i small-signal transfer characteristics?
- · Large-signal transfer characteristics:

$$v_O = V_S - \frac{KR_L}{2}(v_I - V_T)^2$$

· Input is of form:

$$v_I = V_I + v_i$$

· Output should then be of form:

$$\begin{split} v_O &= V_O + v_o = V_S - \frac{KR_L}{2}(V_I + v_i - V_T)^2 \\ &= V_S - \frac{KR_L}{2}[(V_I - V_T)^2 + 2v_i(V_I - V_T) + v_i^2] \\ &= V_S - \frac{KR_L}{2}(V_I - V_T)^2 - KR_L(V_I - V_T)v_i - \frac{KR_L}{2}v_i^2 \end{split}$$

- Identify terms:
 - Bias terms:

$$V_O = V_S - \frac{KR_L}{2}(V_I - V_T)^2$$

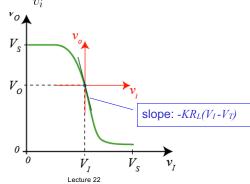
- Small-signal terms:

$$v_o = -KR_L(V_I - V_T)v_i - \frac{KR_L}{2}v_i^2$$

6.002 Spring 2020

Lecture 22

· Small-signal terms:


$$v_o = -\underline{KR_L(V_I - V_T)v_i} - \frac{KR_L}{2}v_i^2$$

· Linearizing means keeping only the linear term:

$$v_o \simeq -KR_L(V_I - V_T)v_i$$

· Small-signal gain:

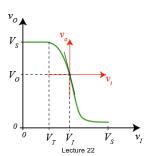
$$A_v = \frac{v_o}{v_i} \simeq -KR_L(V_I - V_T)$$

6.002 Spring 2020

23

$$v_o = -KR_L(V_I - V_T)v_i - \frac{KR_L}{2}v_i^2$$
$$v_o \simeq -KR_L(V_I - V_T)v_i$$

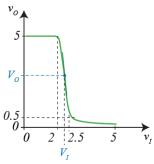
· When is this approximation good?


quadratic term << linear term

$$\frac{KR_L}{2}v_i^2 \ll KR_L(V_I-V_T)v_i$$

Or:

$$v_i \ll 2(V_I - V_T)$$


• The higher the bias, the easier it is to deliver this condition.

6.002 Spring 2020

• Let's put some numbers: use 2N7000 $(V_T=1.8~V,~K=0.1~A/V^2)$ with $R_L=1~k\Omega$ and $V_S=5~V$.

Transfer characteristics look like:

If select V_O =2.6 V, then V_I =2.2 V, and:

$$\left|\frac{v_o}{v_i}\right| \simeq -KR_L(V_I - V_T) \sim 40$$

This is true as long as:

$$v_i \ll 2(V_I - V_T)$$

6.002 Spring 2020

Lecture 22

25

- More generally, obtain small-signal transfer characteristics by **Taylor series** expansion of large-signal transfer characteristics.
- If large-signal transfer characteristics are:

$$v_O = f(v_I)$$

• Then, if $v_I = V_I + v_i$, expand around $(V_L V_O)$:

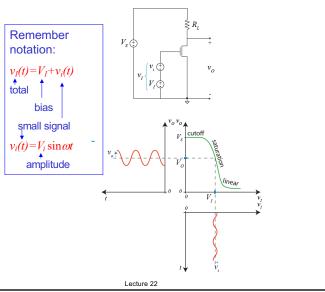
$$v_O = V_O + v_o = f(V_I + v_i) \simeq f(V_I) + \frac{df}{dv_I}|_{V_I} v_i$$

· Small-signal transfer characteristics are:

$$v_o = \frac{df}{dv_I}|_{V_I} v_i$$

· And small-signal gain is:

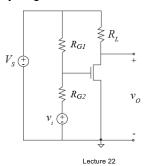
$$\frac{v_o}{v_i} = \frac{df}{dv_I}|_{V_I}$$


[check that from here, you get the same result as above]

6.002 Spring 2020

Lecture 22

4. Amplifier biasing

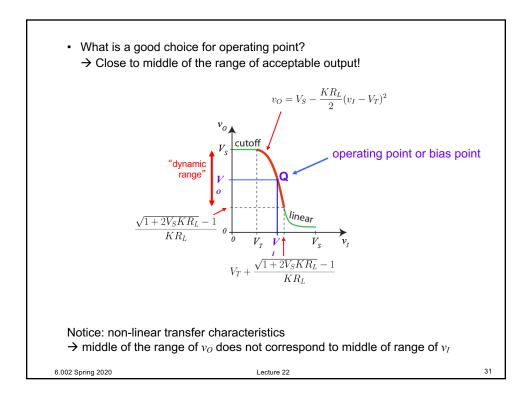

• To have signal entirely within acceptable v_I range, apply signal, v_i , on top of bias, V_I :

- Problem: need two power supplies, V_S and V_I
- But, can produce V_I out of V_S using voltage divider!

$$V_S \oplus \bigvee_{\substack{\xi \\ R_{G2}}} V_I \qquad V_I = V_S \frac{R_{G2}}{R_{G1} + R_{G2}}$$

· And connecting everything to the circuit:

6.002 Spring 2020


6.002 Spring 2020

28

• Resistor values have to be designed correctly to bias MOSFET in saturation $\sqrt{Q} = V_S \frac{R_{G2}}{R_{G1} + R_{G2}}$ input bias too low input bias too high

Lecture 22

6.002 Spring 2020

Summary

- To ensure MOSFET operation in the saturation regime, apply bias to the input signal.
- Even if transfer characteristics are non linear, adequate amplifier operation can be obtained for signals of small amplitude.
- For small signals, calculate amplifier gain by linearizing large-signal transfer characteristics of amplifier at bias point.
- In general, this is done by selecting linear term in Taylor series expansion of transfer characteristics around bias point.

32

6.002 Spring 2020 Lecture 22