6.002 CIRCUITS AND
ELECTRONICS
Lecture 7 — Capacitors, RC Networks, Step Response

February 27, 2020

Contents:

1. Capacitor: a quick review

2. Differentiator (from Tuesday)
3. Analysis of RC circuits

Reading Assignment:
Agarwal and Lang, Ch. 9 (§ §9.1.1,9.2.1,9.3.1), 10 ( § 10.1)

Handouts:

Lecture 7 notes
Quiz 1 on March 11. It covers everything until today (including psets!)
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1. Capacitor: a quick review

+ lIdeal parallel-plate capacitor:
A
y— AN
A q v
Ay

» Relationship between charge in plates and voltage across capacitor [from
Gauss’ law]:

q=Cuv

Units:
Coulombs = Farads x Volts

In parallel plate capacitor:
C=ce¢

With:
€ = permittivity [F/cm)|
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Device equation for capacitor

qg=Cv
Current is rate of flow of charge:

g
o df i 1.
I’

Therefore, in a capacitor:

o

dt I 't I 'f | 'I‘
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2. Differentiator (from last lecture)

This is what we want:

1
Vv ar v

differentiator

R
Qo

Could use a capacitor:

1
—>

VIAV @ C

dvin
dt

where:

i=C

— For differentiator, need to convert i into v,
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» Differentiator: use small resistance to transform i into vo:

i
—>

Want:
- d& d’U”\r
Tt dt
so that:
. durn
vo = 1R~ RC d?

This requires:
vo L V¢ X UIN
Or:

dv IN

RC L

L vIN

Signal time derivative can’t be too high = upper limit to
frequency content of signal
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Op-amps to the rescue... i =i
i ?vandv>i transformation

Remember this configuration:

virtual ground
v =0, also i =0

Voltage-to-current converter:

Current-to-voltage converter: N
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Op-amp differentiator

Use an op-amp i-v converter:

Inverting input is virtual ground:

vy =0 — v_~0

Then
i~ Cdl)”\/
o dt
At output:
vo = —iR
All together:
d@']N
o ~ —RC
"o dt
6.002 Spring 2020 Lecture 6

Differentiator is accurate if:

Vo = UIN
which requires:
lo_| < vrn
v. is given by:
Vo vo RC d’U”\r
Vp — V= — — U= ——— = ———
* A A A dt
We need now:
Edvnw v Bandwidth of
A ar | SSUw differentiator greatly

improved!
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Coming back to capacitors...
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» Another way to write capacitor equation:

. dv
— —_ =
Z—Ct v

1

C

it
/ idt

+ Relationship between current and voltage:

i VA /
—> A
I SN
t 4
i VA
i —> __/
B N
t t
i VA
u_' g 1
I SN
t t

We need initial conditions

to fully define the state of
the capacitor

Abrupt change in voltage
gives rise to infinite current!
- Not possible in real
circuits!

Voltage across capacitor depends on the entire past
history of current flowing through it > memory!
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Power and energy in a capacitor

» Power is rate of flow of energy. For capacitor:

, dv d 1
p—M—UCE—aSCv)—

— If d&v?/dt>0 - p>0: energy being dumped into C
— If dv?/dt<0 = p<0: energy being removed from C

dwE

dt

Unlike resistor, capacitor stores energy (in electrostatic form).
Electrostatic energy stored in capacitor:

1
Wg = 501)2

» Capacitors can store substantial amounts of energy!

w:
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Capacitors are everywhere...
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Doppler Ultrasound System

6.002 Spring 2020

Capacitors are there, even when you don’t see them...

» Transistors (MOSFETS) really looks like:

drain
gate memoryless
‘V[ MOSFET
CGS
Embedded SiGe stressors [* 4 source

" Intel’'s 32 nm MOSFE

» The Capacitance between the gate and the source is key to give the transistor
its ability to control current flow (and its time response).

» All other devices have capacitance associated with them.

= Need to understand impact of capacitors on circuit operation
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3. Analysis of RC circuits SR
» Consider the following circuit: +
9 (1) @ C = v (1)
v
+ Circuit behavior completely determined by:
— Differential equation describing circuit
— Input waveforms
— Initial conditions
» Consider example with:
— Input step function: viy (1)=Viy u,(?)
— Initial condition: v (r=0))=0
N A
Vo
0 >
A 0 t
* How does v.(?) evolve in time?
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R v (1)
» First, think physics! v
+ IN
Vil C= v
0 »
0 t
v (1=0)=0
+ Situation at t=0-: ‘J’;ff:O_)
+
v (1=0) R ¢ v (1=0)
At t=0-:
U[N(t = 07) =0
1 c(f = 07) =0

Since KVL demands that:

Then:
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- V(00w i 1=0)
« Situation at t=0*: + -
+ _+ —Nti=
v (1=07)=V,, — Vv (1=07)=0
Capacitor can’ t change voltage abruptly:
vc(t = 0+) =0
Vv appears across R: :' 4
vr(t =0") =Viy
. 0 >
Resistor current: 0 t
+ ‘/IN v R 0
ip(t=0") R i
ir starts charging C: 0 >
0 1
d’UC Ve
ot
) 0= >
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+ Situation at t=c:
vall =0)=0_i(t=0)=0

Vp(1=0)=V,

+
C _v((r:x}:VI\,

Capacitor will charge until it reaches the maximum voltage possible, Vy:

vo(t =o00) = Vin

Viv A
No voltage across R: Vi
’L’R(t = OO) =0 0 »
N t
Resistor current is zero: Ve a
in(t = 00) = 0 L S —
Nothing changes from here on: 0 >
s t
- steady-state condition 0
V: A
R
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 Solution roughly looks like:

R il
+

1‘1\/[) C =—= 1'(,(”

~Y

~Y

~Y

» Features of solution:
— Increase of v¢() slows down with time
— Given enough time, v((?) saturates

— ig(t) peaks at =0* and drops from there to eventually zero

* What is the detailed shape? How long does it take for steady-state
to be achieved? - need to solve problem mathematically
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Mathematical solution (18.03 to the rescue!)

* Given:

R v/s\"([)

VWAR .

+ IN

v, (1) C = v(,(l)
0 >
0 t
v (t=0)=0

. Want v(1)

1. Formulate differential equation
2. Find particular solution

3. Find homogeneous solution

4. Apply initial conditions
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1. Formulate differential equation: R vt

+ l//‘\
V() C = vl
0
0
One node analysis. v (t=0)=0
Node equation for vc(?):
ve(t) — vrn(t dve(t
o(t) IN()+C c():0
R dt
Rearrange:
dvg(t
RO% +ve(t) = vin(t)
Solution of form:
ve(t) = ven(t) + vep(t)
Homogeneous Particular
solution solution
(“natural ("forced |
response”) response”)
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2. Find particular solution:

Interested in solution for #>0. In this range:

vin(t) = Vin
Differential equation becomes:
dve(t
RC vgt( ) + ’Uc(t) =Vin

Particular solution satisfies differential equation:

dvcp(t
RC%” +vop(t) = Vin
Try solution of form: )
vep(t) =K
Then:
vep(t) = Vin
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3. Find homogeneous solution

Homogeneous differential equation:

d’UCH (t)

RC o

+ UCH(t) =0
Solution of the form: _
VCoH (t) = Ae™ %
Value of 1 that satisfies differential equation:
T = RC
Then:
ven(t) = Ae” e
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4. Apply initial conditions
Total solution so far:

ve(t) = Vin + Ae~ 7o

Initial condition:

(Ve (0) =0
[voltage across capacitor can’ t change abruptly]

Then:
A=—-Vin

Final solution:

velt) = Vin(1 — )
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» Can also compute current through R: N A
R (1) Vi
N ¥
+
valt) O C = v (1) 0 >
v
in(®) un(t) —ve(t)  Vin e
R\Y — >
R R .
iR
R
0 - >
0 RC t
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Summary

» Capacitors are everywhere... (even when you don’t see them)

+ Circuits with capacitors exhibit memory: voltage across capacitor depends
on the entire past history of current flowing through it.

* A MOSFET has capacitance associated with its gate.

» Device equation for capacitor:

- (O
i1 =C%
+ Capacitors can store energy.

» RC circuits characterized by first-order linear differential equation.
» Time constant of RC circuits: =RC.
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