6.002 CIRCUITS AND ELECTRONICS
Lecture 7 – Capacitors, RC Networks, Step Response
February 27, 2020
 Contents: Capacitor: a quick review Differentiator (from Tuesday) Analysis of RC circuits Reading Assignment: Agarwal and Lang, Ch. 9 (§ § 9.1.1, 9.2.1, 9.3.1), 10 (§ 10.1) Handouts: Lecture 7 notes Quiz 1 on March 11th. It covers everything until today (including psets!)
6.002 Spring 2020 Lecture 7 1

Power and energy in a capacitor

2. Find particular solution: Interested in solution for t > 0. In this range: $v_{IN}(t) = V_{IN}$ Differential equation becomes: $RC \frac{dv_C(t)}{dt} + v_C(t) = V_{IN}$ Particular solution satisfies differential equation: $RC \frac{dv_{CP}(t)}{dt} + v_{CP}(t) = V_{IN}$ Try solution of form: $v_{CP}(t) = K$ Then: $v_{CP}(t) = V_{IN}$ 3. Find homogeneous solution

Homogeneous differential equation:

$$RC\frac{dv_{CH}(t)}{dt} + v_{CH}(t) = 0$$

Solution of the form:

$$v_{CH}(t) = Ae^{-\frac{t}{\tau}}$$

Value of $\boldsymbol{\tau}$ that satisfies differential equation:

$$\tau = RC$$

Then:

$$v_{CH}(t) = Ae^{-\frac{t}{RC}}$$

25

Lecture 7

6.002 Spring 2020

4. Apply initial conditions Total solution so far: $v_C(t) = V_{IN} + Ae^{-\frac{t}{RC}}$ Initial condition: $v_C(0) = 0$ [voltage across capacitor can't change abruptly] Then: $A = -V_{IN}$ Final solution: $v_C(t) = V_{IN}(1 - e^{-\frac{t}{RC}})$

Summary

- Capacitors are everywhere... (even when you don't see them)
- Circuits with capacitors exhibit memory: voltage across capacitor depends on the entire past history of current flowing through it.
- A MOSFET has capacitance associated with its gate.
- Device equation for capacitor:

$$i = C \frac{dv}{dt}$$

- Capacitors can store energy.
- RC circuits characterized by first-order linear differential equation.
- Time constant of RC circuits: $\tau = RC$.

6.002 Spring 2020

Lecture 7

28