Lecture 4

1. **DEPENDENT SOURCES**

 - **Node analysis:** no change

 ![Circuit Diagram]

 \[V_A = \frac{-e}{R_1 + R_2 + kI_1} \]

 ![Additional Circuit Diagram]

 \[+ e \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{k}{R_1} \right) = V_A \left(\frac{1}{R_1} + \frac{k}{R_1} \right) \]

 - **Thévenin / Norton**
 - Only use if dependent source is linear
 - Only use if both parts of dependent source are inside circuit being modeled

 \[e = \frac{R_1}{V_A} \left(\frac{1}{R_1} + \frac{k}{R_1} \right) \]

 - Dependent sources increase "effective" R_2 by factor $k+1$

 - Floating dependent voltage sources \rightarrow use supernode

2. **R_{TH}**

 - Turn off independent sources
 - Do not turn off dependent sources
 - Can use V_{th} (test) I_{test} method

 ![Additional Circuit Diagram]

 \[V_{th} = \frac{D_{oc}}{R_1} \]

 At D_{oc} \[i_1 = 0 \rightarrow kI_1 = 0 \]

 \[\Rightarrow V_{th} = 0 \]
9/17/19

Lecture 9

\[v_{\text{test}} = i_{\text{test}} \left[R_1 + R_2(1+k) \right] \]

At \(e^* \):

\[\frac{e}{i_{\text{test}} + R_2 + k i_1} = 0 \]

\[v_{\text{test}} = R_1 \cdot i_{\text{test}} \]

\[v_{\text{test}} = i_{\text{test}} R_1 + e \]

\[e = R_2(1+k) i_{\text{test}} \]

\[\text{device: } v_{\text{test}} - e = i_{\text{test}} \]

\[\frac{v_{\text{test}}}{R} = i_{\text{test}} \]

\[v_{\text{test}} = i_{\text{test}} R_1 + e \]

\[v_{\text{test}} = i_{\text{test}} R_1 \]

2. Superposition

- Turn off all but one independent source
- Only apply superposition to independent sources

\[i = \frac{1}{1000} = 10mA \]

\[v = 1V \Rightarrow i = 10mA \]

\[\Rightarrow v_0 = 10V \]

3. Turn off 2V source

\[v = \frac{1}{2} V \Rightarrow i = 5mA \Rightarrow v_0 = 5V \]

Total \(v_0 = 15V \)
Recap

1. Superposition
 Analyze a linear circuit with multiple sources by analyzing response to each source, then summing responses

 \[e_1 = e_{1A} + e_{1B} + e_{1C} \]

 Adapted from Lang and Agarwal

2. Thévenin and Norton
 Any linear circuit can be modeled at a port by a voltage source and series resistor, or current source and parallel resistor

 \[V_{TH} \quad \text{and} \quad R_{TH} \]

 where:
 \[V_{TH} = \text{open-circuit voltage at the port} \]
 \[R_{TH} = \text{the resistance looking into the port with all independent sources turned OFF} \]

 \[I_N \]

 where:
 \[I_N = \text{short-circuit current out of the port} \]
 \[I_N = \frac{V_{TH}}{R_{TH}} \]
 \[R_N = R_{TH} \]

This week

- Starting on printed-circuit board for Doppler ultrasound project
- US system will be introduced next week
- Soldering training this Tue and Wed
- We’ll be implementing our first stage of the US system in Lab 4
Amplification

DAC from Lab 2

- Resistive networks can only attenuate signals
- How can we amplify signals?

Amplification

- Amplifiers increase the voltage, current or power of signals
- Essential components in communications, signal processing, sensors, memory, logic, etc.
Amplification

- Amplification brings signal to required level and enhances noise tolerance:
 - Without amplification:
 - Hard to see signal
 - 1 mV
 - 10 mV
 - With amplification:
 - Better!
 - Noise reduced

Amplifiers

- Amplifier is a 3-port system:
 - Input port
 - Power port
 - Output port

…but often power port not explicitly shown.

- Ports are typically referenced to a common “ground” node:
Our first amplifier will be an op-amp, and we'll model it with dependent sources.

Dependent sources

Modeling an amplifier

Introduce a new symbol to denote that the voltage depends on some other quantity.
Dependent sources

Two-port devices
- Control port: sets the value of the source
- Output port: source terminals

4 types of dependent current sources

- **Voltage-controlled current source (VCCS)**
 - Control port: \(i_i \)
 - Output port: \(i_o \)
 - Relationship: \(i_o = f(v_i) \)

- **Current-controlled current source (CCCS)**
 - Control port: \(v_i \)
 - Output port: \(i_o \)
 - Relationship: \(i_o = f(i_i) \)

- **Voltage-controlled voltage source (VCVS)**
 - Control port: \(v_i \)
 - Output port: \(v_o \)
 - Relationship: \(v_o = f(v_i) \)

- **Current-controlled voltage source (CCVS)**
 - Control port: \(i_i \)
 - Output port: \(v_o \)
 - Relationship: \(v_o = f(i_i) \)

Dependent sources also model transducers

A nonlinear current-controlled current source

A non-linear current-controlled current source
Dependent sources for amplifiers

Not just voltage-controlled voltage source...

Example using voltage-controlled current source:

\[v_O = V_S - R_L G v_I \]

\[R_L G > 1 \]

Output signal has 180° phase shift
Offset varies, but often doesn’t matter